Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.06.27.497749

ABSTRACT

The RNA modification N6-methyladenosine (m6A) plays a key role in the life cycles of several RNA viruses. Whether this applies to SARS-CoV-2 and whether m6A affects the outcome of COVID-19 disease is still poorly explored. Here we report that the RNA demethylase FTO strongly affects both m6A marking of SARS-CoV-2 and COVID-19 severity. By m6A profiling of SARS-CoV-2, we confirmed in infected cultured cells and showed for the first time in vivo in hamsters that the regions encoding TRS_L and the nucleocapsid protein are multiply marked by m6A, preferentially within RRACH motifs that are specific to {beta}-coronaviruses and well conserved across SARS-CoV-2 variants. In cells, downregulation of the m6A demethylase FTO, occurring upon SARS-CoV-2 infection, increased m6A marking of SARS-CoV-2 RNA and slightly promoted viral replication. In COVID-19 patients, a negative correlation was found between FTO expression and both SARS-CoV-2 expression and disease severity. FTO emerged as a classifier of disease severity and hence a potential stratifier of COVID-19 patients.


Subject(s)
COVID-19
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.05.12.22274823

ABSTRACT

To investigate whether wastewater surveillance can be used as an early warning system to detect a rise in SARS-CoV-2 positive cases, and to follow the circulation of specific variants of concern (VOC) in particular geographical areas, wastewater samples were collected from local neighborhood sewers and from a large regional wastewater treatment plant (WWTP) in the area of Leuven, Belgium. In two residential sampling sites, a rise in viral SARS-CoV-2 copies in wastewater preceded the peaks in positive cases. In the WWTP, peaks in the wastewater viral load were seen simultaneous with the waves op positive cases caused by the original Wuhan SARS-CoV-2 strain, the Alpha variant and the Delta variant. For the Omicron BA.1 variant associated wave, the viral load in wastewater increased to a lesser degree, and much later than the increase in positive cases, which could be attributed to a lower level of fecal excretion, as measured in hospitalized patients. Circulation of SARS-CoV-2 VOCs (Alpha, Delta and Omicron) could be detected based on the presence of specific key mutations. The shift in variants was noticeable in the wastewater, with key mutations of two different variants being present simultaneously during the transition period. We found that wastewater-based surveillance is a sensitive tool to monitor SARS-CoV-2 circulation levels and VOCs in larger regions. This can prove to be highly valuable in times of reducing testing capacity. Differences in excretion levels of various SARS-CoV-2 variants should however be taken into account when using wastewater surveillance to monitor SARS-CoV-2 circulation levels in the population.


Subject(s)
Severe Acute Respiratory Syndrome
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.24.477505

ABSTRACT

New platforms are urgently needed for the design of novel prophylactic vaccines and advanced immune therapies. Live-attenuated yellow fever vaccine YF17D serves as vector for several licensed vaccines and platform for novel vaccine candidates. Based on YF17D, we developed YF-S0 as exceptionally potent COVID-19 vaccine candidate. However, use of such live RNA virus vaccines raises safety concerns, i.e., adverse events linked to original YF17D (yellow fever vaccine-associated neurotropic; YEL-AND, and viscerotropic disease; YEL-AVD). In this study, we investigated the biodistribution and shedding of YF-S0 in hamsters. Likewise, we introduced hamsters deficient in STAT2 signaling as new preclinical model of YEL-AND/AVD. Compared to parental YF17D, YF-S0 showed an improved safety with limited dissemination to brain and visceral tissues, absent or low viremia, and no shedding of infectious virus. Considering yellow fever virus is transmitted by Aedes mosquitoes, any inadvertent exposure to the live recombinant vector via mosquito bites is to be excluded. The transmission risk of YF-S0 was hence evaluated in comparison to readily transmitting YFV-Asibi strain and non-transmitting YF17D vaccine, with no evidence for productive infection of vector mosquitoes. The overall favorable safety profile of YF-S0 is expected to translate to other novel vaccines that are based on the same YF17D platform.


Subject(s)
Fever , COVID-19 , Viremia , Yellow Fever , Disease
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.08.433449

ABSTRACT

We have identified camelid single-domain antibodies (VHHs) that cross-neutralize SARS-CoV-1 and -2, such as VHH72, which binds to a unique highly conserved epitope in the viral receptor-binding domain (RBD) that is difficult to access for human antibodies. Here, we establish a protein engineering path for how a stable, long-acting drug candidate can be generated out of such a VHH building block. When fused to human IgG1-Fc, the prototype VHH72 molecule prophylactically protects hamsters from SARS-CoV-2. In addition, we demonstrate that both systemic and intranasal application protects hACE-2-transgenic mice from SARS-CoV-2 induced lethal disease progression. To boost potency of the lead, we used structure-guided molecular modeling combined with rapid yeast-based Fc-fusion prototyping, resulting in the affinity-matured VHH72_S56A-Fc, with subnanomolar SARS-CoV-1 and -2 neutralizing potency. Upon humanization, VHH72_S56A was fused to a human IgG1 Fc with optimized manufacturing homogeneity and silenced effector functions for enhanced safety, and its stability as well as lack of off-target binding was extensively characterized. Therapeutic systemic administration of a low dose of VHH72_S56A-Fc antibodies strongly restricted replication of both original and D614G mutant variants of SARS-CoV-2 virus in hamsters, and minimized the development of lung damage. This work led to the selection of XVR011 for clinical development, a highly stable anti-COVID-19 biologic with excellent manufacturability. Additionally, we show that XVR011 is unaffected in its neutralizing capacity of currently rapidly spreading SARS-CoV-2 variants, and demonstrate its unique, wide scope of binding across the Sarbecovirus clades.


Subject(s)
Lung Diseases , COVID-19
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.26.433062

ABSTRACT

Within one year after its emergence, more than 108 million people contracted SARS-CoV-2 and almost 2.4 million succumbed to COVID-19. New SARS-CoV-2 variants of concern (VoC) are emerging all over the world, with the threat of being more readily transmitted, being more virulent, or escaping naturally acquired and vaccine-induced immunity. At least three major prototypic VoC have been identified, i.e. the UK (B.1.1.7), South African (B.1.351) and Brazilian (B.1.1.28.1), variants. These are replacing formerly dominant strains and sparking new COVID-19 epidemics and new spikes in excess mortality. We studied the effect of infection with prototypic VoC from both B.1.1.7 and B.1.351 lineages in Syrian golden hamsters to assess their relative infectivity and pathogenicity in direct comparison to two basal SARS-CoV-2 strains isolated in early 2020. A very efficient infection of the lower respiratory tract of hamsters by these VoC is observed. In line with clinical evidence from patients infected with these VoC, no major differences in disease outcome were observed as compared to the original strains as was quantified by (i) histological scoring, (ii) micro-computed tomography, and (iii) analysis of the expression profiles of selected antiviral and pro-inflammatory cytokine genes. Noteworthy however, in hamsters infected with VoC B.1.1.7, a particularly strong elevation of proinflammatory cytokines was detected. Overall, we established relevant preclinical infection models that will be pivotal to assess the efficacy of current and future vaccine(s) (candidates) as well as therapeutics (small molecules and antibodies) against two important SARS-CoV-2 VoC.


Subject(s)
COVID-19
7.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.01.429108

ABSTRACT

In response to the ongoing COVID-19 pandemic, repurposing of drugs for the treatment of SARS-CoV-2 infections is being explored. The FDA-approved HIV protease inhibitor Nelfinavir is one of the drugs that has been reported to inhibit in vitro SARS-CoV2 replication. We here report on the effect of Nelfinavir in the Syrian hamster SARS-CoV-2 infection model. Although treatment of infected hamsters with either 15 mg/kg BID or 50 mg/kg BID Nelfinavir [for four consecutive days, initiated on the day of infection] did not reduce viral RNA loads nor infectious virus titres in the lungs (as compared to the vehicle control at the end of treatment) the drug markedly improved virus-induced lung pathology at doses that were well tolerated. Yet, a massive interstitial infiltration of neutrophils was observed in the lungs of treated (infected and uninfected) animals. The protective effect of Nelfinavir on SARS-CoV-2-induced lung pathology that is unrelated to an antiviral effect warrants further exploration in the context of the treatment of COVID-19.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Infections
8.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.31.429010

ABSTRACT

The novel {beta}-coronavirus, SARS-CoV-2, the causative agent of coronavirus disease 2019 (COVID-19), has infected more than 101 million people and resulted in 2.2 million death worldwide. Recent epidemiological studies suggested that some environmental factors, such as air pollution, might be the important contributors to the mortality of COVID-19. However, how environmental exposure enhances the severity of COVID-19 remains to be fully understood. In the present report, we provide evidence showing that mdig, a previously reported environmentally-induced oncogene that antagonizes repressive trimethylation of histone proteins, is a master regulator for SARS-CoV-2 receptors neuropilin-1 (NRP1) and NRP2, cathepsins, glycan metabolism and inflammation, key determinants for viral infection and cytokine storm of the patients. Depletion of mdig in bronchial epithelial cells by CRISPR-Cas-9 gene editing resulted in a decreased expression of NRP1, NRP2, cathepsins, and genes involved in protein glycosylation and inflammation, largely due to a substantial enrichment of lysine 9 and/or lysine 27 trimethylation of histone H3 (H3K9me3/H3K27me3) on these genes as determined by ChIP-seq. These data, accordingly, suggest that mdig is a key mediator for the severity of COVID-19 in response to environmental exposure and targeting mdig may be one of the effective strategies in ameliorating the symptom and reducing the mortality of COVID-19.


Subject(s)
Virus Diseases , COVID-19 , Inflammation
9.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.19.159053

ABSTRACT

SARS-CoV-2 rapidly spread around the globe after its emergence in Wuhan in December 2019. With no specific therapeutic and prophylactic options available, the virus was able to infect millions of people. To date, close to half a million patients succumbed to the viral disease, COVID-19. The high need for treatment options, together with the lack of small animal models of infection has led to clinical trials with repurposed drugs before any preclinical in vivo evidence attesting their efficacy was available. We used Syrian hamsters to establish a model to evaluate antiviral activity of small molecules in both an infection and a transmission setting. Upon intranasal infection, the animals developed high titers of SARS-CoV-2 in the lungs and pathology similar to that observed in mild COVID-19 patients. Treatment of SARS-CoV-2-infected hamsters with favipiravir or hydroxychloroquine (with and without azithromycin) resulted in respectively a mild or no reduction in viral RNA and infectious virus. Micro-CT scan analysis of the lungs showed no improvement compared to non-treated animals, which was confirmed by histopathology. In addition, both compounds did not prevent virus transmission through direct contact and thus failed as prophylactic treatments. By modelling the PK profile of hydroxychloroquine based on the trough plasma concentrations, we show that the total lung exposure to the drug was not the limiting factor. In conclusion, we here characterized a hamster infection and transmission model to be a robust model for studying in vivo efficacy of antiviral compounds. The information acquired using hydroxychloroquine and favipiravir in this model is of critical value to those designing (current and) future clinical trials. At this point, the data here presented on hydroxychloroquine either alone or combined with azithromycin (together with previously reported in vivo data in macaques and ferrets) provide no scientific basis for further use of the drug in humans.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
10.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.23.056838

ABSTRACT

Introductory paragraphSince the emergence of SARS-CoV-2 causing COVID-19, the world is being shaken to its core with numerous hospitalizations and hundreds of thousands of deaths. In search for key targets of effective therapeutics, robust animal models mimicking COVID-19 in humans are urgently needed. Here, we show that productive SARS-CoV-2 infection in the lungs of mice is limited and restricted by early type I interferon responses. In contrast, we show that Syrian hamsters are highly permissive to SARS- CoV-2 and develop bronchopneumonia and a strong inflammatory response in the lungs with neutrophil infiltration and edema. Moreover, we identify an exuberant innate immune response as a key player in pathogenesis, in which STAT2 signaling plays a dual role, driving severe lung injury on the one hand, yet restricting systemic virus dissemination on the other. Finally, we assess SARS-CoV- 2-induced lung pathology in hamsters by micro-CT alike used in clinical practice. Our results reveal the importance of STAT2-dependent interferon responses in the pathogenesis and virus control during SARS-CoV-2 infection and may help rationalizing new strategies for the treatment of COVID-19 patients.


Subject(s)
Lung Diseases , Bronchopneumonia , COVID-19 , Edema
SELECTION OF CITATIONS
SEARCH DETAIL